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Abstract

Let U™ denote the maximal length arithmetic progression in a non-uniform ran-
dom subset of {0,1}", where 1 appears with probability p,. By using dependency
graph and Stein-Chen method, we show that U™ — ¢, Inn converges in law to an
extreme type distribution with lnp, = —2/¢,. Similar result holds for W) the

maximal length aperiodic arithmetic progression (mod n).
MSC 2000: 60C05, 11B25.
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1 Introduction

An arithmetic progression is a sequence of numbers such that the difference of any two
successive members of the sequence is a constant. A celebrated result of Szemerédi [5]
says that any subset of integers of positive upper density contains arbitrarily long arith-
metic progressions. The recent work [6] reviews some extremal problems closely related
with arithmetic progressions and prime sequences, under the name of the Erdos-Turan
conjectures, which are known to be notoriously difficult to solve.

Let &1,&2, -+ , &, be a uniformly chosen random word in {0,1}" and =Z,, be the random
set consisting elements i such that {; = 1. Benjamini et al. [3] studies the length of
maximal arithmetic progressions in Z,. Denote by U the maximal length arithmetic
progression in Z,, and W the maximal length aperiodic arithmetic progression (mod
n) in =,. They show, among others, that the expectation of U™ and W is roughly
2lnn/In2.



In view of the random graph theory [4], a natural extension of [3] is to consider non-
uniform random subset of {0,1}", which is the main interest of this note. Let §; = 1 with
probability p, and & = 0 with probability 1 — p,, where p, € [0,1] is a function of n.
Following [3], the key to our work is to construct proper dependency graph and apply the
Stein-Chen method of Poisson approximation (see e.g. [4, 1]). Our result implies that,
in the non-uniform scenarios, the expectation of U™ and W is roughly ¢, Inn, with
Inp, = —2/¢,. Obviously, taking p, = 1/2 and ¢, = 2/1n2, we then recover the main
result of Benjamini et al.

The rest of the note is organized as follows. We present the main results in Section 2.

Section 3 is devoted to the proofs.

2 Results

Let &1,&2,- -+ be i.i.d. random variables with P(§; = 1) = p,, and P(§; =0) =1 — p,,. For

integers 1 < s,t < n, define

k
WS(;L) ::max{1§k§n2§5=07nfs+it( modn)zl}‘ (1)

i=1
Therefore, Wi?) is the length of the longest arithmetic progression ( mod n)in {1,2,--- ,n}

starting at s with difference t. Moreover, set W) = maxi<s¢<n WS(?) Similarly, define

k
n—s
Us(gj) = ma‘x{l <k< \‘ t J :&s :071:[1§8+it: 1}7 (2)

and U™ = max; <, <p US(Z), where |a] is the integer part of a.

Theorem 1. Suppose that lnp, = —2/c, and o < ¢, = o(lnn) for some a > 0. Let
{zn} be a sequence such that ¢, Inn + x, € Z for all n, and inf, z, > B for some f € R.
We have

lim A pW ™) < e lnn+ x,) =1, (3)

r+2

where X\(z) = pr™*. In particular, W(")/cn Inn converges to 1 in probability, as n — oo.

Theorem 2. Suppose that lnp, = —2/c, and o < ¢, = o(lnn) for some a > 0. Let
{yn} be a sequence such that ¢, Inn —In(2¢, Inn) + y, € Z for all n, and inf, y, > B for
some B € R. We have

lim ) P(U™ < ¢, Inn —In(2¢, Inn) +y,) = 1, (4)

n—o0



Figure 1: The probability p,, versus c,.

where N(z) = p=t2. In particular, U™ /¢, Inn converges to 1 in probability, as n — co.

The relationship between p,, and ¢, is depicted in Fig. 1. We observe that the proba-
bility p,, by our assumptions, should within the regime e=2/® < p,, = e=2/°(27) for o > 0.
For the case p, = o(1) (i.e., ¢, = 0(1)), by letting a — 0, we can infer that W) < Inn
and U™ < Inn whp.

3 Proofs

In this section, we will only consider Theorem 1 since the proofs are very similar. The-
orem 1 will be proved through a series of lemmas by similar reasoning to [3] with some
modifications.

For a collection of random variables {X;}I" ,, a graph G of order n is called a de-
pendency graph [4] of {X;} , if for any vertex i, X; is independent of the set {X :
vertices ¢ and j are not adjacent}. The following is a result of Arratia et al. [2], which is
a instrumental version of the Stein-Chen method in numerous probabilistic combinatorial

problems [1].

Lemma 1.([2]) Let {X;}?; be n Bernoulli random variables with EX; = p; > 0. Let G
be a dependency graph of {X;}? . Set Sp, =>1" 1 X; and A= ES, =" | p;. Define

Bi(G)=)_ > EXEX, (5)

i=1 jijri



and

n
By(G) =), >, B(XiX)). (6)
i=1 jAijevi
Let Z be a Poisson random variable with EZ = X. For any A C N, we have

|P(S, € A) — P(Z € A)| < B1(G) + Bs(G). (7)

Fix € > 0 and set m = | (¢, +€)Inn|. Define the truncated version

k
Wsl,(zl) 3:maX{1§k§m2€s:0,H§S+it( modn)zl} (8)

i=1
and W' = maxi <, 1<y, Wsl(tn ). For € R define the indicator variable

Is,t(:c)zl{ws,gf>>6nlnn+x} and S(z)= ) Iy(x). (9)

1<s,t<n

By definition, it is clear that W™ > ¢, Inn 4 z if and only if S(z) > 0. Set A(s,t) =
{s+it},. Fix x € R such that 2 < eInn. Hence, as in [3], we can construct a dependency
graph G of random variables { /s (x)}%,_; by setting the vertex set {(s,?)}{;_; and edges
(s1,t1) ~ (s2,t2) if and only if A(sy,t1) N A(s2,t2) # 0.

The following combinatorial lemma is useful.
Lemma 2.([3]) Let Dy (k) be the number of pairs (s1,t1) such thatt # t1 and |A(s,t)N
A(s1,t1)| = k. Then we have

( + 1)2n’ =
Dsy(k) <4 (m+1)?m? 2<k<Z+1 (10)
0, k>3 +1
Recall the definitions (5) and (6). Let
Bi(z,G) = Z Z El, 1, (m)Elsz,tz (z) (11)
s1,t1 $9,t9
(s1,t1)~(s2,t2)
and
Bi(z,G) = Z Z E[ISLtI (m)IS27t2(x)]' (12)

81,1 (s1,t1)#(s2,:t2)
(s1,t1)~(s2,t2)



Lemma 3. Forall x < elnn and § > 0, we have

Bi(z,G) + By(z,G) = O(pr=tHn1). (13)

Proof. From (9), we have El,(z) = P(W;S?) > cpInn + ) < pérlnntetl - Gince for
fixed s and ¢, the number of pairs (si,t1) such that |A(s,t) N A(s1,t1)] = k is at most
D, +(k) 4+ 1, we obtain by Lemma 2

m+41
Bi(z,G) < Y% (Dag(k)+ D)pplentmnteth)
st k=1
1 m/2+1
< 2@+ - 1)2 1 D2m2 4 1
S Py n4; (m+)n++é((m+)m+)
T m2n+m6
pa .0 <2>
n
= O(pn(x+1) 6_1)7 (14)

for all 6 > 0, where the last equality holds using the assumption ¢, = o(lnn).
Next, we have E(I;4(x)Is, ¢ (x)) < pAen et )=F when |A(s,t) N A(s1,t1)] = k.

Therefore, by Lemma, 2

By(z,G) < ZZDS’t(k)pi(cnlnn-ﬁ—x-‘rl)—k

s,t k=1
m/2+1
< pHeth. 42 2(m 4 1)*n + (m + 1)? Zp . (15)
Since ¢, > a > 0, we obtain
m/2+1 . .
Z p;k:O(pn2) :O(n?). (16)
k=2
Combining (15), (16) and the assumption ¢, = o(lnn), we derive
2(z+1) m?n + m4n6225
BQ(SU’ G) = Pn -0 n2
= O(py*+Hn’) (17)

forall § > 0. O

The following lemma is a simplified version of Theorem 1.



Lemma 4. W(”)/cn Inn converges to 1 in probability, as n — oo; i.e., for any 6 > 0,

Jim P( we 5) ~0. (18)
n—00 cplnn
Proof. Fix € > 0, we have
PW > (cq + &) Inn) < plente)innsl, (19)
Since ¢, = o(lnn), it follows that
PW®™ > (¢, +¢)Inn) < n2plentelinntl < o~ 0 (20)
as n — 00.
Next, let x = —eInn and Z(x) be a Poisson random variable with
EZ(z) = Az) = ES(x) = n2plenlinta+2) 5 20 (21)

Note that {W) < (¢, —¢)Inn} implies that {W'(™ < (¢, — ¢)Inn}. By Lemma 1 and
Lemma 3,
PW®™ < (¢, —e)lnn) < P(S(z)=0)
< Bi(x,G)+ Ba(z,G) + P(Z(z) = 0)

2elnn—4

= O(p2Etbps=lpeme )0, (22)

as n — oo, for § > 0 and ¢ < /5. Thus, by (20) and (22), it follows that

(n)
lim P ( w
n—oo

cplnn

-1

> 6) = 0. (23)

forany 0 <0 < 1/5. O

To prove of Theorem 1, we need to further refine the proof of Lemma 4.

Proof of Theorem 1. As in the proof of Lemma 4, let Z(x) be a Poisson random variable
with

EZ(z) = Ma) = ES(z) = nplen et (24)
If ¢, Inn+2 € Z, then A\(x) = p=+2. Recall that W™ > ¢, Inn+z if and only if S(z) > 0.
Thus, by Lemma 1 and Lemma 3

|P(W'™ > ¢,Inn+z) — P(Z(z) #0)| = |P(S(z)>0)— P(Z(z) > 0)]
< Bi(z,G) + Ba(z,G)

= O™, (25)



Note that z < elnn, and then we have
W > coinn+ 2} = {WM > (c+e)lnn} U{W'™ > ¢, Inn + 2}. (26)
Hence, by (20), (25) and (26), we obtain

PW™ < cylnn+xz)—e @] = [PW® > ¢, lnn+ z) — P(Z(z) # 0)]
< PW®™ > (¢, +¢)lnn)
+|P(W'™ > ¢, Inn + z) — P(Z(x) # 0)|

_2elnn

< e e +O(pAE RSl (27)

for 0 < 0 < 1, where the first item on the right-hand side of (27) tends to 0 as n — oc.
Let {z,} be a sequence such that ¢, Inn + z,, € Z for all n. If inf, x,, > § € R, then

pi(m"Jrl)vz‘s_1 — 0 and e*@n) is a bounded sequence. Thus, from (27) it follows that

‘ek(zn)P(W(n) < c¢plnn+ «Tn) _ 1‘ — O<6_2561;1n +pi(wn+1)n571) -0, (28)

as n — o0o. O
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